职 务:副院长、研究员、博导
分工安排:主管科研与基地建设、资产管理、实验室管理与建设工作,协管保密、学科建设工作
电子邮件:bozhang@sjtu.edu.cn
办公地址:上海交通大学航空航天学院A322
个人主页:https://scholar.google.com/citations?hl=zh-CN&pli=1&user=3vYQaocAAAAJ
时间 | 任职单位 | 职务 |
---|---|---|
2021年1月-至今 | 上海交通大学航空航天学院 | 研究员 |
2017年1月-2020年12月 |
上海交通大学航空航天学院 |
副教授 |
2015年8月-2016年12月 | 华东理工大学资源与环境工程学院 | 副教授 |
2012年9月-2015年7月 | 华东理工大学资源与环境工程学院 | 讲师 |
时间 | 毕业院校 | 学历 |
---|---|---|
2008年-2012年 |
北京理工大学 |
博士 |
2009年-2011年 | McGill University | 联合博士 |
2006年-2008年 | 南京理工大学 | 硕士 |
2002年-2006年 | 江苏工业学院(现常州大学) | 本科 |
(1)激波与爆轰物理;
(2)高超爆轰推进技术;
(3)爆炸与冲击动力学。
(9)2023.1-2026.12,国家自然科学基金面上项目(12272234):激波聚焦作用下气液掺混燃料爆轰诱导机制与优化控制方法,负责人(在研);
(8)2022.9-2025.8,上海市2022年度“科技创新行动计划”政府间国际科技合作项目,负责人(在研);
(7)2022.4-2025.3,上海市自然科学基金面上项目,负责人(在研);
(6)2022.1-2024.12,国防科技173计划技术领域基金项目,负责人(在研);
(5)2018.1-2021.12,国家自然科学基金面上项目(11772199):气相多元混合燃料爆轰极限动力学特性研究,负责人(已结题);
(4)2019.1-2020.12,工信部安全专项:低温推进剂应急设施安全距离研究,交大负责人(已结题);
(3)2018.1-2020.12,国家自然科学基金“面向发动机的湍流燃烧基础研究重大研究计划”培育项目(91741114):面向爆轰发动机的射流模式对激励爆轰起爆的湍流机制研究,负责人(已结题);
(2)2015.1-2017.12,国家自然科学基金青年项目(11402092):不稳定性对气相爆轰波起爆与传播影响机理的研究,负责人(已结题);
(1)2014.7-2015.12,中国博士后基金特别资助:气相混合燃料爆炸和爆轰的特征规律研究,负责人(已结题)。
共计出版专著1部,发表论文83篇,其中SCI论文71篇,ESI高被引论文7篇。SCI被引3100余次,h-index:36 (统计至2024.3)
2024:
(71)Yang Z Z, Cheng J, Zhang B*.Deflagration and detonation induced by shock wave focusing at different Mach numbers. Chinese Journal of Aeronautics, 2024, 37(2): 249-258 [SCI, IF:5.7(2023)]
(70)Yang Z Z, Zhang B*, Ng HD. Detonation onset due to the energy accumulation effect of shock wave focusing. Acta Astronautica, 2024, 215:264-276 [SCI, IF:3.5 (2023)]
(69)Zhang B*, Yang ZZ, Leo YD. On the dynamics of drifting flame front in a confined chamber with airflow disorder in a methane-air mixture. Fuel , 2024, 357:129761[SCI, IF:7.4 (2023)]
(68)Cheng J, Zhang B*. Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures. Fuel, 2024, 363: 131046 [SCI, IF:7.4 (2023)]
2023:
(67)Hu J H, Cheng J*, Zhang B*. The diffraction and re-initiation behavior of detonation wave in premixed H2–O2–Ar mixture. Physics of Fluids. 2023, 35: 095109[SCI, IF:4.6(2023)]
(66)Cheng J, Zhang B*. Characteristics of flame acceleration and deflagration-to-detonation transition enhanced by SF6 jet-in-cross-flow/flame interaction, Aerospace Science and Technology, 2023,140: 108451. [SCI, IF:5.6(2023)]
(65)Cheng J, Zhang B*. Analysis of explosion and laminar combustion characteristics of premixed ammonia-air/oxygen mixtures. Fuel, 2023, 351: 128860 [SCI, IF:7.4 (2023)]
(64)Dai T K, Zhang B*. Effect of Air Jet Vortex Generators on the Shock Wave Boundary Layer Interaction of Transonic Wing. Aerospace, 2023, 10, 553[SCI, IF:2.6 (2023)]
(63)Dai T K, Zhang B*. Simulations of Compression Ramp Shock Wave/Turbulent Boundary Layer Interaction Controlled via Steady Jets at High Reynolds Number. Aerospace, 2023, 10(10), 892[SCI, IF:2.6 (2023)]
(62)Yang Z Z, Zhang B*. Numerical and experimental analysis of detonation induced by shock wave focusing. Combustion and Flame, 2023,251: 112691. [SCI, IF:5.767 (2022)]
(61)Li Y C, Zhang B*. Visualization of ignition modes in methane-based mixture induced by shock wave focusing. Combustion and Flame, 2023,247: 112491. [SCI, IF:5.767 (2022)]
(60)Leo Y D, Zhang B*, Dai T K, Chang X Y. Influence of pressure and dilution gas on the explosion behavior of methane-oxygen mixtures. Fuel, 2023, 333: 126390 [SCI, IF:8.035 (2022)]
2022:
(59)Zhang B*, Li Y, Liu H. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors. Combustion and Flame, 2022,236:111763. [SCI, IF:5.767 (2022)]
(58)Cheng J, Zhang B*, Yang ZZ, Liu H. Investigation of the effect of turbulence induced by double non-reactive gas jet on the deflagration-to-detonation transition. Aerospace Science and Technology, 2022,124: 107556. [SCI, IF:5.457 (2022)]
(57)Cheng J, Zhang B*, Dai TK, Liu H. Effects of jet/flame interaction on deflagration-to-detonation transition by non-reactive gas jet in a methane-oxygen mixture. Aerospace Science and Technology, 2022,126: 107581. [SCI, IF:5.457 (2022)]
(56)Chang X Y, Bai C H, Zhang B*. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures. Process Safety and Environmental Protection , 2022, 162:384-394 [SCI, IF:7.926 (2022)]
(55)Leo YD, Zhang B*. Explosion behavior of methane-air mixtures and Rayleigh-Taylor instability in the explosion process near the flammability limits. Fuel, 2022, 324: 124730 [SCI, IF:8.035 (2022)]
(54)Chang X Y, Bai C H, Zhang B*, Sun B F. The effect of ignition delay time on the explosion behavior in non-uniform hydrogen-air mixtures. International Journal of Hydrogen Energy, 2022, 47:9810-9818 [SCI, IF:7.139(2022)]
2021:
(53)Zhang B*, Li Y, Liu H. Ignition behavior and the onset of quasi-detonation in methane-oxygen using different end wall reflectors. Aerospace Science and Technology, 2021,116:106873. [SCI, IF:5.107 (2021)]
(52)Dai T K, Zhang B*, Liu H. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: A comparative study. International Journal of Hydrogen Energy, 2021, 46:30861-30869 [SCI, IF: 5.816 (2021)]
(51)Xiao Q P , Cheng J, Zhang B*, Zhou J, Chen W H. Schlieren visualization of the interaction of jet in crossflow and deflagrated flame in hydrogen-air mixture, Fuel, 2021, 292: 120380[SCI, IF:6.609 (2021)]
(50)Cheng J, Zhang B*, Liu H, Wang FX. The precursor shock wave and flame propagation enhancement by CO2 injection in a methane-oxygen mixture. Fuel, 2021, 283:118917(ESI高被引)
(49)Cheng J, Zhang B*, Ng HD , Liu H, Wang FX. Effects of inert gas jet on the transition from deflagration to detonation in a stoichiometric methane-oxygen mixture. Fuel, 2021, 285: 119237[SCI, IF:5.578 (2020)]
2020:
(48)Zhang B*, Liu H, Yan BJ, Ng HD. Experimental study of detonation limits in methane-oxygen mixtures: Determining tube scale and initial pressure effects. Fuel, 2020, 259 : 116220(ESI高被引)
(47)Zhang B*, Chang X Y, Bai C H. End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets. Fuel, 2020, 270:117485 (ESI高被引)
(46)Cheng J, Zhang B*, Liu H, Wang FX. Experimental study on the effects of different fluidic jets on the acceleration of deflagration prior its transition to detonation. Aerospace Science and Technology, 2020, 106:106203. [SCI, IF:4.499 (2020)]
(45)Chang X Y, Zhang B*, Ng HD, Bai C H. The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures. Fuel, 2020, 277:118190[SCI, IF:5.578 (2020)]
(44)Bai C H, Chang X Y, Zhang B*. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration. Fuel, 2020, 271: 117610[SCI, IF:5.578 (2020)]
2019:
(43)Zhang B*,Liu H. Theoretical prediction model and experimental investigation of detonation limits in combustible gaseous mixtures . Fuel, 2019, 258 :116132(ESI高被引)
(42)Zhang B*, Liu H , Li YC. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures. Fuel, 2019, 253:305-310. (ESI高被引)
(41)Zhang B*. Detonation limits in methane-hydrogen-oxygen mixtures: Dominant effect of induction length. International Journal of Hydrogen Energy, 2019, 44: 23532-23537[SCI, IF:4.084 (2019)]
(40)Yao N, Wang L Q, Bai C H, Liu N, Zhang B*. Analysis of dispersion behavior of aluminum powder in a 20 L chamber with two symmetric nozzles. Proc Safety Prog, 2019, e12097 [SCI, IF:0.885 (2019)]
(39)Zhang B*,Liu H*, Yan B J. Velocity behavior downstream of perforated plates with large blockage ratio for unstable and stable detonations. Aerospace Science and Technology, 2019,86:236-243. [SCI,IF:3.050 (2019)]
(38)Bai C H, Liu Nan , Zhang B*. Experimental investigation on the lower flammability limits of diethyl ether/ n-pentane/epoxypropane-air mixtures, Journal of Loss Prevention in the Process Industries, 2019, 57: 273-279[SCI,IF:1.982 (2019)]
(37)Zhang B*,Liu H*, Yan B J. Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture. Fuel, 2019, 236:975-83. [SCI,IF:4.908 (2018)]
(36)Zhang B*,Liu H*, Yan B J. Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales. Fuel, 2019, 239:617-22. [SCI,IF:4.908 (2018)]
2018:
(35)Zhang B*,Liu H*, Wang C. Detonation propagation limits in highly argon diluted acetylene-oxygen mixtures in channels. Experimental Thermal and Fluid Science, 2018,90:125-131. [SCI,IF:2.830 (2017)]
2017:
(34)Zhang B*,Liu H*. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combustion and Flame, 2017, 182: 279-287. [SCI,IF:4.168 (2016)]
(33)Zhang B*,Liu H*, Wang C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture. Applied Thermal Engineering, 2017, 127: 671-678. [SCI,IF:3.356 (2017)]
(32)Zhang B*,Liu H*, Wang C*. On the detonation propagation behavior in hydrogen-oxygen mixture under the effect of spiral obstacles. International Journal of Hydrogen Energy, 2017, 42:21392-21402 [SCI,IF:3.582(2017)]
(31)Zhang B*,Liu H*, Wang C. An experimental study on the detonability of gaseous hydrocarbon fuel–oxygen mixtures in narrow channels. Aerospace Science and Technology, 2017,69:193-200. [SCI,IF:2.057 (2017)]
(30)Shen XB, Zhang B, Zhang XL, et al. Explosion characteristics of methane-ethane mixtures in air. Journal of Loss Prevention in the Process Industries, 2017,45:102-107. [SCI,IF:1.409(2016)]
2016:
(29)Zhang B*, Wang C, Shen XB, et al. Velocity fluctuation analysis near detonation propagation limits for stoichiometric methane-hydrogen-oxygen mixture. International Journal of Hydrogen Energy.2016, 41:17750-17759. [SCI,IF:3.205(2016)]
(28)Zhang B*. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture. Combustion and Flame, 2016, 169:333-339. [SCI,IF:4.168 (2016)]
(27)Wang C, Zhao YY, Zhang B*. Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels. Journal of Loss Prevention in the Process Industries, 2016,43:120-126. [SCI,IF:1.409(2016)]
(26)Zhang B*, Ng HD. An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures. Energy, 2016,107:1-8. [SCI,IF:4.292(2016)]
(25)Zhang B*, Shen XB, Pang L, Gao Y. Methane-oxygen detonation characteristics near their propagation limits in ducts. Fuel. 2016,177:1-7. [SCI,IF:3.611(2016)]
(24)Shen XB*, Zhang B*, Zhang XL, Wu SZ. Explosion behaviors of mixtures of methane and air with saturated water vapor. Fuel. 2016, 177:15-18. [SCI,IF:3.611 (2016)]
(23)Gao Y*, Zhang B, Ng HD, Lee JHS. An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures. International Journal of Hydrogen Energy.2016, 41: 6076-6083. [SCI,IF:3.205(2016)]
(22)Zhang B*, Pang L*, Shen XB*, Gao Y, Measurement and prediction of detonation cell size in binary fuel blends of methane/hydrogen mixtures. Fuel. 2016, 172:196-199. [SCI,IF:3.611 (2016)]
(21)Zhang B*, Pang L*, Gao Y. Detonation limits in binary fuel blends of methane/hydrogen mixtures. Fuel. 2016,168: 27-33. [SCI,IF:3.611 (2016)]
2015:
(20)Zhang B*, Shen XB*, Pang L*, Gao Y. Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels. International Journal of Hydrogen Energy. 2015,40(43): 15078-15087. [SCI,IF:3.313(2016)]
(19)Zhang B*, Shen XB*, Pang L. Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether-air mixtures. Fuel. 2015, 159: 646-652. [SCI,IF:3.52(2015)]
(18)Zhang B*, Ng HD. Explosion behavior of methane–dimethyl ether/air mixtures. Fuel. 2015,157:56-63. [SCI,IF:3.52(2015)]
(17)Zhang B*, Xiu GL*, Chen J, Yang SP. Detonation and deflagration characteristics of p-Xylene/gaseous hydrocarbon fuels/air mixtures. Fuel. 2015,140:73-80[SCI,IF:3.52(2015)]
2014:
(16)Zhang B*, Xiu GL., Bai CH. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures. Fuel. 2014, 124:125-132 [SCI,IF:3.406(2014)]
(15)Zhang B*, Bai CH. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels-An overview. Fuel. 2014,117:294-308[SCI,IF:3.406(2014)]
(14)Zhang B*, Mehrjoo N, Ng HD, Lee JHS. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution. Combustion and Flame. 2014,161:1390-1397. [SCI, IF:3.708(2013)]
(13)Zhang B*, Bai CH, Xiu GL, Liu QM, Gong GD. Explosion and flame characteristics of methane/air mixtures in a large-scale vessel. Process Safety Progress. 2014,33(4):362-368 [SCI, IF:0.593(2013)]
(12)Mehrjoo N, Zhang B, Portaro R, Ng HD*. Lee JHS. Response of critical tube diameter phenomenon to small perturbations for gaseous detonations. Shock Waves. 2014, 24(2):219-229 [SCI, IF:0.743(2013)]
2013:
(11)Zhang B, Ng, H.D*, Lee JHS. Measurement and relationship between critical tube diameter and critical energy for direct blast initiation of gaseous detonations. Journal of Loss Prevention in the Process Industries. 2013,26: 1293-1299 [SCI,IF:1.347(2013)]
(10)Bai CH, Zhang B*, Xiu GL,Liu QM, Chen M. Deflagration to detonation transition and detonation structure in diethyl ether mist/aluminum dust /air mixtures. Fuel. 2013,107:400-408 [SCI,IF:3.357(2012)]
(9)Yao GB, Zhang B*, Xiu GL, Bai CH, Liu PP. The critical energy of direct initiation and detonation cell size in liquid hydrocarbon fuel/air mixtures. Fuel. 2013, 113: 331-339. [SCI,IF:3.357(2012)]
(8)Zhang B*, Bai CH. Critical energy of direct detonation initiation in hydrocarbon-oxygen mixtures. Safety Science. 2013, 53:153-159, [SCI,IF:1.402(2011)]
(7)Bai CH, Chen J*, Zhang B,Wang, Z. Q. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils. Defence Science Journal.2013, 63(4):376-380 [SCI,IF:0.31(2013)]
2012:
(6)Zhang B*, Ng HD, Lee JHS. The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures. Combustion and Flame, 2012,159(9): 2944-2953 [SCI,IF:3.585(2011)]
(5)Zhang B, Ng HD*, Lee JHS. Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge. Shock Waves. 2012,22(1): 1-7[SCI,IF:0.951(2011)]
(4)Zhang B, Ng HD*, Lee JHS. Measurement and scaling analysis of critical energy for direct initiation of detonation. Shock Waves . 2012,22(3): 275-279 [SCI,IF:0.951(2011)]
(3)Eaton R, Zhang B, Bergthorson JM, Ng HD*. Measurement and chemical kinetic predictions of detonation cell size in methanol-oxygen mixtures. Shock Waves, 2012, 22(2): 173-178 [SCI,IF:0.951(2011)]
2011:
(2)Zhang B, Ng HD*, Mével R, Lee JHS. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures. International Journal of Hydrogen Energy, 2011, 36:5707-5716 [SCI,IF:4.054(2011)]
(1)Zhang B, Kamenskihs V, Ng HD*, Lee JHS. Direct blast initiation of spherical gaseous detonation in highly argon diluted mixtures. Proceedings of the Combustion Institute, 2011, 33 (2): 2265-2271 [SCI,IF:3.633(2011)]
中文期刊论文:
(12)专著:张博,白春华. 气相爆轰动力学[M],科学出版社,31.2万字,2012
(11)韩文虎,张博,王成. 气相爆轰波起爆与传播机理研究进展. 爆炸与冲击,2021,41(12): 121402 (EI)
(10)颜秉健, 张博*,等. 气相爆轰波近失效状态的传播模式. 爆炸与冲击,2018,38(6):1435-1440 (EI)
(9)张博*,白春华.气相爆轰动力学特征研究进展.中国科学(物理学 力学 天文学). 2014, 44(7): 665-681.
(8)高慧会,张博*,等. 二甲醚/空气/氩气混合物的爆炸特性. 爆炸与冲击,2015, 35(5): 753-757 (EI).
(7)张博*,白春华. 高电压点火有效能量的测量及相关问题. 爆炸与冲击,2013, 33(1): 85-90, (EI).
(6)张博*,白春华. H2-O2/Air直接起爆形成爆轰临界能量的预测模型. 高压物理学报,2013, 27(5):719-724.
(5)张博*,白春华. C2H2-O2-Ar混合气体爆轰特征参数研究.高压物理学报,2013, 27(2): 287-291.
(4)张博*,白春华. C2H2-O2-Ar和C2H2-N2O-Ar直接起爆形成爆轰的临界能量.爆炸与冲击, 2012, 32(6):592-598 (EI).
(3)张博*,John H.S. Lee,白春华. 高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界起爆能量影响的实验研究. 高压物理学报,2012, 26(1):55-62 (EI).
(2)张博*,John H.S. Lee,白春华.C2H4-O2混合气体直接起爆的临界能量. 爆炸与冲击,2012 , 32(2):113-120, (EI).
(1)张博*,白春华,John H.S. Lee.C2H2-2.5O2-Ar混合气体临界管径和爆轰胞格及临界起爆能量的实验研究.北京理工大学学报. 2012, 32(3):226-230 (EI).
发明专利:
(7)张博,程俊,刘洪. 一种基于交错射流的湍流强化火焰加速系统及方法,授权号:ZL202110853879.4
(6)张博,李元昌,刘洪. 一种激波聚焦点火及相应点火特性测量装置及方法, 授权号:ZL202110699623.2
(5)张博,刘洪,代廷楷,程俊,李元昌.一种基于高速射流的爆轰激励系统及方法, 授权号:ZL201910497759.8
(4)张博,李元昌,程俊,代廷楷,刘洪. 一种爆燃波传播特性的测试装置及方法,授权号:ZL202010057724.5
(3)张博,沈晓波,于文强,陈婷,陈潇,李嘉晨,谢禄霖.一种监测爆轰波速度变化的系统及方法.2014.10. 授权号:ZL 201410669242.X
(2)张博,白春华.可燃气体爆轰临界管径的测试系统和方法, 2013.9,授权号:ZL20121 0052665.8
(1)张博,白春华.直接起爆形成爆轰的临界能量测试方法, 2013.7,授权号:ZL20121 0058653.6
教学工作
课程名称:燃烧学
授课对象:本科生
学时数:48
学分:3
【人才计划】
2021 获“上海市人才发展资金”资助;
2017 上海交通大学“晨星青年学者奖励计划”;
【科技奖励】
2023 第四届爆炸力学优秀青年学者;
2022 上海市自然科学二等奖,“气相爆轰波动力学规律表征方法与理论”(第1完成人);
2015 John H.S. Lee Young Investigator Award, Institute for Dynamics of Explosions and Reactive Systems (IDERS), Leeds, UK;
2014 教育部科技进步一等奖(排名7/10);
【其它奖励】
上海交通大学航空航天学院2018、2019、2022、2023年度优秀教师;
2019 上海交通大学“第四届青年教师教学竞赛”,三等奖;
2018 上海交通大学“第三届青年教师教学竞赛”,优秀奖。
(2)Aerospace ,编委(2022-)
(1)爆炸力学爆轰专业组委员(2021-)